来源:网络资源 2018-02-06 14:14:14
解析:
如果用n表示台阶的级数,an表示某人走到第n级台阶时,所有可能不同的走法,容易得到:
①当n=1时,显然只要1种走法,即a1=1。
②当n=2时,可以一步一级走,也可以一步走二级上楼,
因此,共有2种不同的走法,即a2=2。
③当n=3时,
如果第一步走一级台阶,那么还剩下二级台阶,由②可知有a2=2(种)走法。
如果第一步走二级台阶,那么还剩下一级台阶,由①可知有a1=1(种)走法。
根据加法原理,有a3=a1+a2=1+2=3(种)
类推,有:
a4=a2+a3=2+3=5(种)
a5=a3+a4=3+5=8(种)
a6=a4+a5=5+8=13(种)
a7=a5+a6=8+13=21(种)
a8=a6+a7=13+21=34(种)
a9=a7+a8=21+34=55(种)
a10=a8+a9=34+55=89(种)
a11=a9+a10=55+89=144(种)
a12=a10+a11=89+144=233(种)
a13=a11+a12=144+233=377(种)
a14=a12+a13=233+377=610(种)
一般地,有an=an-1+an-2
走一段共有610种走法。
共有(18-1)×2=34(段)。
共有走法:34*610=20740
关注奥数网官方微信 数学资料、数学真题、更有全国教育资讯 微信搜索“奥数网”或扫描二维码即可添加