广州奥数网
广州站

2022年大事记

奥数广州站 > 广州奥数杯赛 > 精选奥数题 > 正文

六年数学应用题训练及详解9

来源:.   作者:.   2010-03-15 11:19:20

 试题下载 

六年数学应用题训练及详解9

  1. 甲、乙两车分别从A,B两地同时相向开出,四小时后两车相遇,然后各自继续行驶三小时,此时甲车距B地10千米,乙车距A地80千米.问甲车到达B地时乙车还要经过多少小时才能到达A地?

  解法一:说明甲车和乙车4-3=1小时共行10+80=90千米。两车行4+3=7小时,甲车比乙车多行80-10=70千米。所以甲车比乙车每小时多行70÷7=10千米。所以甲车每小时行(90+10)÷2=50千米,乙车每小时行90-50=40千米。当甲到底B地时,用去10÷50=0.2小时,乙行余下的80千米需要80÷40=2小时,所以还需要2-0.2=1.8小时。

  解法二:总路程是(10+80)÷(1-3/4)=360千米。甲车行4+3=7小时行了全程的(360-10)÷360=35/36,所以,甲车行完全程需要7÷35/36=7.2小时。乙车7小时行了全程的(360-80)÷360=7/9,所以乙车行完全程需要7÷7/9=9小时。所以甲车到达时,乙车还需要9-7.2=1.8小时。

  解法三:两车行4+3=7小时,甲车比乙车多行80-10=70千米。甲车每小时比乙车多行70÷7=10千米。如果再行1小时,那么甲车比乙车就多行70+10=80千米,而且甲车和乙车共行了两个全程。所以,甲车超出部分和乙车还差的部分相等,即80÷2=40千米。所以,乙车需要80÷40=2小时到达。甲车之需要10÷(10+40)=0.2小时到达。所以当甲车到达时,乙车还需要2-0.2=1.8小时。

  2. 甲、乙两个长方体水池装满了水,两水池的高相等.已知甲池的排水管10分钟可将水排完,乙池的排水管6分钟可将水排完.问同时打开甲、乙两池的排水管,多长时间后甲池的水位高正好是乙池水位高的3倍?

  解法一:把满池水看作10×6=60份。甲池每分钟排6份,乙池每分钟排10份。每个小时相差10-6=4份。甲池剩下的是乙剩下的3倍,说明甲乙两池之差是乙剩下的2倍。所以乙池排了的部分是乙池剩下的2÷4×10=5倍。所以乙池排了5÷(1+5)=5/6。即60×5/6=50份,所以,需要的时间是50÷10=5小时。

  解法二:甲池和乙池排水相差1/6-1/10=1/15,相差部分占甲池排水的1/15÷1/10=2/3。甲剩下的看作单位“1”,那么相差就是1-1/3=2/3。所以甲池排出的是剩下的2/3÷2/3=1倍,说明刚好排了1/2,所以所用的时间是10×1/2=5小时。

  解法三:两池水相差的高度和甲池排出的比是(1/6-1/10):1/10=2:3。即甲池排出3份的深的水,两池就相差2份。甲池剩下的水是乙池剩下的水的3倍,刚好相差2份,所以剩下的水也是3份。所以甲池排出了一半的水,即用去10÷2=5小时。

  3. 一辆汽车从甲地开往乙地,平路占全程的3/5,剩下的路程中3/8是上坡路,其余是下坡路.回来时上坡路是5千米.甲、乙两地相距多少千米?

  解:还原问题的思想。5÷(1-3/8)÷(1-3/5)=20千米。

  4. 一件工作,甲、乙合作要4小时完成,乙、丙合作要5小时完成.现在先由甲、丙合作2小时后,余下的乙还需6小时完成,乙单独做这件工作要几小时?

  解:可以理解成甲乙先合作2小时,乙丙再合作2小时,丙还做了6-2-2=2小时。

  并2小时完成了1-2/4-2/5=1/10,所以乙单独做这件工作要2÷1/10=20小时。

  甲、乙工效:1/4

  乙、丙工效:1/5

  甲、丙合作2小时后,余下的乙还需6小时完成,相当于

  甲、乙合作2小时,乙、丙合作2小时,乙独做2小时

  乙工效:(1-1/4×2-1/5×2)÷2=1/20

  乙单独做这件工作要:1÷1/20=20小时

  5. 某体育用品商店进了一批篮球,分一极品和二极品.二极品的进价比一极品便宜20%,按优质优价的原则,一极品按20%的利润定价,二极品按15%的利润定价.一极品篮球比二极品篮球每个贵14元.问一极品篮球的进价是每个多少元?

  解:把一级品的进价看作单位“1”,那么二级品的进价就是1-20%=80%。

  一级品的定价是进价的1+20%=120%,二级品的定价是80%×(1+15%)=92%。所以一级品的进价是14÷(120%-92%)=50元。

  一极品进价看作"1",二极品的进价:1-20%=0.8

  一极品按20%的利润定价:1×(1+20%)=1.2

  二极品按15%的利润定价:0.8×(1+15%)=0.92

  一极品篮球的进价是:14÷(1.2-0.92)=50元

  6. 某商品按定价出售,每个可获得利润50元.如果按定价的80%出售10件,与按定价每个减价30元出售12件所获得的利润一样多,这种商品每件定价多少元?

  解:按定价每个减价30元出售12件获利12×(50-30)=240元。所以按照按定价的80%出售10件也可以获得240元的利润,那么每件获得的利润是240÷10=24元。价格就降了50-24=26元。所以每件商品的定价是26÷(1-80%)=130元。

  7. 从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,那么摩托车的速度应是多少?

  解:每小时行30千米,按照规定时间,就要多行30×15/60=7.5千米。每小时行20千米,按照规定时间,就要少行20×5/60=5/3千米。所以规定时间就是(7.5+5/3)÷(30-20)=11/12小时。距离是30×(11/12-15/60)=20千米。所以要提前5分钟到达,摩托车的速度是每小时行20÷(11/12-5/60)=24千米

  15分钟=1/4小时

  5分钟=1/12小时

  每小时行30千米,早到15分钟,可以多行:30×1/4=7.5千米

  每小时行20千米,迟到5分钟. 少行:20×1/12=5/3千米

  盈亏问题

  时间:(7.5+5/3)÷(30-20)=11/12小时

  总行程是:20×(11/12+1/12)=20千米

  提前5分钟到,那么摩托车的速度应是:

  20÷(11/12-1/12)=24千米/小时.

  8. 有甲、乙两块含铜量不同的合金,甲块重6千克,乙块重4千克.现在从甲、乙两块合金上各切下重量相等的一部分.将甲块上切下的部分与乙块的剩余部分一起熔炼,再将乙块上切下的部分与甲块剩余部分一起熔炼,得到的两块新合金的含铜量相等.问从每一块上切下的部分的重量是多少千克?

  解:这个含铜量要理解成百分比,而不能理解成重量。

  解法一:假设甲块6千克全部是铜,乙块都不是铜,那么新合金,每块的含铜量就是6÷(6+4)=60%,甲块切下部分就是乙块的60%,所以切下部分是4×60%=2.4千克。

  解法二:假设甲块6千克都不是铜,乙块全部是铜,那么新合金每块的含铜量就是4÷(6+4)=40%,乙块切下部分就是甲块的40%,所以切下部分是6×40%=2.4千克。

  解法三:

  不假设,新合金,甲块留下6÷(6+4)=60%,甲块剩下6×60%=3.6千克。所以,切下部分是6-3.6=2.4千克。

  解法四:

  也不假设,新合金,乙块留下4÷(6+4)=40%,乙块剩下4×40%=1.6千克。所以,切下部分是4-1.6=2.4千克。

  9. 某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个的价钱一样多.这个商品的成本是多少元?

  解:按每个5元利润卖出11个的价钱,包括11个的成本+5×11=55元;按每个11元利润卖出10个的价钱,包括10个的成本+11×10=110元。一样多,说明11-10=1个的成本相当于110-55=55元。

  10. 张先生向商店订购某种商品80件,每件定价100元.张先生向商店经理说:"如果你肯减价,每减价1元,我就多订购4件."商品店经理算了一下,如果减价5%,由于张先生多订购,仍可获得与原来一样多的利润.问这种商品的成本是多少元?

  解法一:减价100×5%=5元,多订购5×4=20件,共订购80+20=100件。

  由于利润一样,所以存在:利润×80=(利润-5)×100,可以得出利润是25元。

  所以成本是100-25=75元。

  解法二:减价100×5%=5元,多订购5×4=20件,如果按照原价销售,就会多获得20÷80=1/4的利润。那么减价的5元,相当于原来利润的1-1÷(1+1/4)=1/5。那么原来的利润是5÷1/5=25元。因此成本是100-25=75元。

  减价5%就是减价了:100×5%=5元

  所以多订了:4×5=20件

  共订购:80+20=100件

  现在的售价是:(100-5)×100=9500元----------100件的成本和利润

  原来的售价是:80×100=8000元--------------80件的成本和利润

  因为利润一样,所以9500-8000=1500元是100-80=20件的成本

  一件的成本是:1500÷20=75元

关注奥数网官方微信 数学资料、数学真题、更有全国教育资讯
微信搜索“奥数网”或扫描二维码即可添加

  

  • 欢迎扫描二维码
    关注奥数网微信
    ID:aoshu_2003

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

中学推荐

试题资料

教育导航

  1. 北京站 上海站 广州站 深圳站
  2. 天津站 武汉站 成都站
  3. 南京站 杭州站 济南站 苏州站
  4. 郑州站 沈阳站 太原站 重庆站
  5. 长沙站 合肥站 宁波站 青岛站
  6. 石家庄站
本地教育

教育政策 | 教育资讯 | 择校指南

考试真题 | 简历面试 | 分班考试

经验分享 | 衔接经验 | 名校动态

热门推荐

小学模拟题 | 教育新闻

热门试题资料 | 广州越秀区

广州海珠区 | 广州天河区

重点中学

广州大学附中 | 育才实验学校

中山大学附中 | 广州华师附中

二中应元学校 | 广雅实验学校

小学试题

期中试题 | 口算题

期末试题 | 数学知识点

单元测试 | 数学练习题

京ICP备09042963号-15 京公网安备 11010802020155号

违法和不良信息举报电话:010-56762110 举报邮箱:wzjubao@tal.com

奥数网版权所有Copyright@2005-2021 www.aoshu.com. All Rights Reserved.