广州奥数网
广州站

2022年大事记

奥数广州站 > 小升初 > 模拟题 > 正文

推荐:小升初数学应用题综合训练1及答案

来源:.   作者:.   2010-02-04 15:18:43

试题下载

小升初数学:应用题综合训练1及答案

  1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

  总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵

  需要种的天数是2150÷86=25天

  甲25天完成24×25=600棵

  那么乙就要完成900-600=300棵之后,才去帮丙

  即做了300÷30=10天之后 即第11天从A地转到B地。

  2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

  这是一道牛吃草问题,是比较复杂的牛吃草问题。

  把每头牛每天吃的草看作1份。

  因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份

  所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份

  因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份

  所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份

  所以45-30=15天,每亩面积长84-60=24份

  所以,每亩面积每天长24÷15=1.6份

  所以,每亩原有草量60-30×1.6=12份

  第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份

  新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛

  所以,一共需要38.4+3.6=42头牛来吃。

  两种解法:

  解法一:

  设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)

  解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

  3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

  甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元

  乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元

  甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元

  三人合作一天完成(5/12+4/15+7/20)÷2=31/60,

  三人合作一天支付(750+400+560)÷2=855元

  甲单独做每天完成31/60-4/15=1/4,支付855-400=455元

  乙单独做每天完成31/60-7/20=1/6,支付855-560=295元

  丙单独做每天完成31/60-5/12=1/10,支付855-750=105元

  所以通过比较

  选择乙来做,在1÷1/6=6天完工,且只用295×6=1770元

  4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

  把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的18÷3=6倍

  上面部分和下面部分的高度之比是(50-20):20=3:2

  所以上面部分的底面积是下面部分装水的底面积的6÷3×2=4倍

  所以长方体的底面积和容器底面积之比是(4-1):4=3:4

  独特解法:

  (50-20):20=3:2,当没有长方体时灌满20厘米就需要时间18*2/3=12(分),

  所以,长方体的体积就是12-3=9(分钟)的水量,因为高度相同,

  所以体积比就等于底面积之比,9:12=3:4

  5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

  把甲的套数看作5份,乙的套数就是6份。

  甲获得的利润是80%×5=4份,乙获得的利润是50%×6=3份

  甲比乙多4-3=1份,这1份就是10套。

  所以,甲原来购进了10×5=50套。

  6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

  把一池水看作单位“1”。

  由于经过7/3小时共注了一池水,所以甲管注了7/12,乙管注了5/12。

  甲管的注水速度是7/12÷7/3=1/4,乙管的注水速度是1/4×5/7=5/28。

  甲管后来的注水速度是1/4×(1+25%)=5/16

  用去的时间是5/12÷5/16=4/3小时

  乙管注满水池需要1÷5/28=5.6小时

  还需要注水5.6-7/3-4/3=29/15小时

  即1小时56分钟

  继续再做一种方法:

  按照原来的注水速度,甲管注满水池的时间是7/3÷7/12=4小时

  乙管注满水池的时间是7/3÷5/12=5.6小时

  时间相差5.6-4=1.6小时

  后来甲管速度提高,时间就更少了,相差的时间就更多了。

  甲速度提高后,还要7/3×5/7=5/3小时

  缩短的时间相当于1-1÷(1+25%)=1/5

  所以时间缩短了5/3×1/5=1/3

  所以,乙管还要1.6+1/3=29/15小时

  再做一种方法:

  ①求甲管余下的部分还要用的时间。

  7/3×5/7÷(1+25%)=4/3小时

  ②求乙管余下部分还要用的时间。

  7/3×7/5=49/15小时

  ③求甲管注满后,乙管还要的时间。

  49/15-4/3=29/15小时

  7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?

  爸爸骑车和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2

  骑车和步行的时间比就是2:7,所以小明步行3/10需要5÷(7-2)×7=7分钟

  所以,小明步行完全程需要7÷3/10=70/3分钟。

  8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.

  乙车比甲车多行11-7+4=8分钟。

  说明乙车行完全程需要8÷(1-80%)=40分钟,甲车行完全程需要40×80%=32分钟

  当乙车行到B地并停留完毕需要40÷2+7=27分钟。

  甲车在乙车出发后32÷2+11=27分钟到达B地。

  即在B地甲车追上乙车。

  9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

  甲车和乙车的速度比是15:10=3:2

  相遇时甲车和乙车的路程比也是3:2

  所以,两城相距12÷(3-2)×(3+2)=60千米

  10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

  我的解法如下:(共12辆车)

  本题的关键是集装箱不能像其他东西那样,把它给拆散来装。因此要考虑分配的问题。

  3吨(4个)2.5吨(5个)1.5吨(14个)1吨(7个)车的数量

  4个 4个 4辆

  2个2个 2辆

  6个 6个3辆

  2个1个1辆

  6个 2辆

 

关注奥数网官方微信 数学资料、数学真题、更有全国教育资讯
微信搜索“奥数网”或扫描二维码即可添加

  

  • 欢迎扫描二维码
    关注奥数网微信
    ID:aoshu_2003

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

中学推荐

试题资料

教育导航

  1. 北京站 上海站 广州站 深圳站
  2. 天津站 武汉站 成都站
  3. 南京站 杭州站 济南站 苏州站
  4. 郑州站 沈阳站 太原站 重庆站
  5. 长沙站 合肥站 宁波站 青岛站
  6. 石家庄站
本地教育

教育政策 | 教育资讯 | 择校指南

考试真题 | 简历面试 | 分班考试

经验分享 | 衔接经验 | 名校动态

热门推荐

小学模拟题 | 教育新闻

热门试题资料 | 广州越秀区

广州海珠区 | 广州天河区

重点中学

广州大学附中 | 育才实验学校

中山大学附中 | 广州华师附中

二中应元学校 | 广雅实验学校

小学试题

期中试题 | 口算题

期末试题 | 数学知识点

单元测试 | 数学练习题

京ICP备09042963号-15 京公网安备 11010802020155号

违法和不良信息举报电话:010-56762110 举报邮箱:wzjubao@tal.com

奥数网版权所有Copyright@2005-2021 www.aoshu.com. All Rights Reserved.