来源:网络 作者:匿名 2009-08-10 14:40:50
模拟训练题(四)
_____年级 _____班 姓名_____ 得分_____
一填空题:
1. 计算102÷[(350+60÷15)÷59×17]=______.
2. 甲、乙、丙三位同学讨论关于两个质数之和的问题.甲说:“两个质数之和一定是质数.”乙说:“两个质数之和一定不是质数.”丙说:“两个质数之和不一定是质数.”他们当中,谁说得对?答:_____.
3.
4. 有数组:(1,1,1),(2,4,8),(3,9,27),……,那么第1998组的三个数之和的末两位数字之和是_____.
5. 某个大于1的自然数分别除442,297,210得到相同的余数,则该自然数是_____.
6. 甲、乙、丙三种糖果每千克的价格分别是9元,7.5元,7元.现把甲种糖果
7. 某自然数是3和4的倍数,包括1和本身在内共有10个约数,那么这自然数是_____.
8. 一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有_____个月.
9. 某钟表,在
10. 王刚、李强和张军各讲了三句话.
王刚: 我22岁;我比李强小2岁;我比张军大1岁.
李强: 我不是最年轻的;张军和我相差3岁;张军25岁.
张军: 我比王刚年轻;王刚23岁;李强比王刚大3岁.
如果每个人的三句话中又有两句是真话.则王刚的年龄是_____.
二、解答题:
11. 幼儿园的老师把一些画片分给
12. 如图,在一个平行四边形中,两对平行于边的直线将这个平行四边分为九个小平行四边形,如果原来这个平行四边形的面积为99
13. 甲、乙两货车同时从相距300千米的
14. 有15位同学,每位同学都有编号,它们是1号到15号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被3整除”,……,依次下去.每位同学都说,这个数能被他的编号数整除.1号作了一一验证,只有编号连续的两位同学说得不对,其余同学都对,如果告诉你,1号写的数是六位数,那么这个数至少是多少?
———————————————答 案——————————————————————
答 案:
1. 1.
102÷[(350+60÷15)÷59×17]
=102÷[354÷59×17]
=102÷[6×17]
=1
2. 丙.
因为3+5=8不是质数,所以甲说得不对;又因为2+3=5是质数,所以,乙说得不对.因此,两个质数之和不一定是质数,丙说得对.
3. 4.6849
4. 13.
观察每组数的规律知,第1998组为(1998,19982,19983).又19982,19983的末两位数为04,92,而98+04+92=194,因此,第1998组的三个数之和的末两位数为94,其数字之和为9+4=13.
5. 29.
设该自然数为
混合糖果的总价值为9×5+7.5×4+7×3=96(元),平均价格为96÷(5+4+3)=8(元).用10元钱买这种混合糖果10÷8=1.25(千克).
7. 48.
因为10=2×5,这个自然数至少含质因数2和3,且至少含2个2,由约数个数定理知,这个自然数为24×31=48.
8. 5.
若1月1日是星期日,全年就有53个星期日.每月至少有4个星期日,53-4×12=5,多出5个星期日,分布在5个月中,故有5个星期日的月份最多有5个月.
9. 8月2日上午9时.
从7月29日零点到8月5日上午7时,经过175小时,共快了7.5分钟.
175×
所求时刻为8月2日上午9时.
10. 23.
假设王刚是22岁,那么张军的第一句和第三句应该是真的,但此时李强只有一句是真的,与已知矛盾,所以王刚不是22岁.这样,王刚的其他两句是真的.然后李强的第一句和第二句是真的,张军的第一句和第二句也是真的,因此王刚是23岁.
11. 设三班总人数是1,则
12. 除阴影部分外的8个小平行四边形面积的和为99-19=80(
13. 甲车从
14. 首先可以断定编号是2,3,4,5,6,7号的同学说的一定都对.不然,其中说得不对的编号乘以2后所得编号也将说得不对,这样就与“只有编号连续的两位同学说得不对”不符合.因此,这个数能被2,3,4,5,6,7都整除.
其次利用整除性质可知,这个数也能被2×5,3×4,2×7都整除,即编号为10,12,14的同学说得也对.从而可以断定编号11,13,15的同学说得也对,不然,说得不对的编号不是连续的两个自然数.
现在我们可以断定说得不对的两个同学的编号只能是8和9.
这个数是2,3,4,5,6,7,10,11,12,13,14,15的公倍数,由于上述十二个数的最小公倍数是
[2,3,4,5,6,7,10,11,12,13,14,15]
=22×3×5×7×11×13
=60060
设1号写的数为60060
若
关注奥数网官方微信 数学资料、数学真题、更有全国教育资讯 微信搜索“奥数网”或扫描二维码即可添加