Image Modal
广州奥数网
广州站

2022年大事记

奥数广州站 > 广州奥数杯赛 > 精选奥数题 > 正文

1974年第十六届IMO国际奥林匹克数学竞赛试题

来源:网络   作者:匿名   2009-03-30 23:26:47

1.  三个玩家玩游戏。在三张扑克牌上分别写上一个正整数,并且每张牌上的数都不相同。在每一轮游戏中都是随机的把卡片分给这些玩家,然后每个玩家拿到所分得卡片上数目的筹码。当游戏进行时,玩家手上的筹码自然是越来越多。假设游戏至少进行了两轮以上。在最后一轮结束时,第一个玩家有筹码20个,第二个玩家有10个,第三个玩家有9个。又已知在最后一轮游戏中第三个玩家拿到的是最大数目的筹码。试问,在第一轮游戏中哪个玩家收到了中间数量的筹码?

2.  三角形ABC,求证在边AB上存在一点D使得CD是AD、DB的几何平均值的充要条件是

sin A sin B <= sin2(C/2).

3.  试证明对任意非负整数n,下式都不能被5整除:

∑  C(2n+1,2k+1)23k,

上式中的求和是k从0到n,符号 C(r,s) 表示二项式系数 r!/(s!(r-s)!)。

4.  沿着一个 8 x 8 象棋盘(黑白相间)中的线将其分割成p个不相交的长方形,使得每个长方形内的黑白小方格的数目一样,并且每个长方形中小方格的数量也都不一样多。求出所有可能p值中的最大值;并对这样的最大值求出所有可能的分法(即求出那些长方形的大小)。

5.  a,b,c,d是任意实数,判定下式的所有可能值:

a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d)。

6.  设 P(x) 是一个指数d>0的整系数多项式,n是P(X)=1或-1的不同整根的个数,则有
  n <= d + 2.
 

关注奥数网官方微信 数学资料、数学真题、更有全国教育资讯
微信搜索“奥数网”或扫描二维码即可添加

  

  • 欢迎扫描二维码
    关注奥数网微信
    ID:aoshu_2003

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

中学推荐

试题资料

教育导航

  1. 北京站 上海站 广州站 深圳站
  2. 天津站 武汉站 成都站
  3. 南京站 杭州站 济南站 苏州站
  4. 郑州站 沈阳站 太原站 重庆站
  5. 长沙站 合肥站 宁波站 青岛站
  6. 石家庄站
本地教育

教育政策 | 教育资讯 | 择校指南

考试真题 | 简历面试 | 分班考试

经验分享 | 衔接经验 | 名校动态

热门推荐

小学模拟题 | 教育新闻

热门试题资料 | 广州越秀区

广州海珠区 | 广州天河区

重点中学

广州大学附中 | 育才实验学校

中山大学附中 | 广州华师附中

二中应元学校 | 广雅实验学校

小学试题

期中试题 | 口算题

期末试题 | 数学知识点

单元测试 | 数学练习题

京ICP备09042963号-15 京公网安备 11010802020155号

违法和不良信息举报电话:010-56762110 举报邮箱:wzjubao@tal.com

奥数网版权所有Copyright@2005-2021 www.aoshu.com. All Rights Reserved.