来源:网络 作者:匿名 2009-01-12 11:31:29
奥数竞赛是扼杀孩子的天性,还是开发他们的潜能?
这里转载数学竞赛名师熊斌的一篇文章,该文发表于2005年5月的中华读书报上,他是那年的国际数学奥林匹克竞赛(IMO)中国国家队领队兼主教练。这篇文章回答了大家心中的很多问题,文中的许多事实和观点直到今天仍然毫不过时,值得家长和孩子们细读深思。
编者按:近一段时间来,媒体对“奥数(奥林匹克数学竞赛)”和“奥数班”一片讨伐之声。有关人士指出,中小学“奥数班”过于火热,并且日趋功利化和低龄化,对推行素质教育产生了不利影响。北京、广东、河北、浙江、江苏等地纷纷出台规定或采取措施,禁止举办收费的“奥数班”和叫停“奥赛”。尤为引人注目的是,著名华人数学家、菲尔兹奖得主丘成桐发表看法说,“奥数”无助于甚至不利于培养学生的创新能力,影响了学生的全面发展,“奥数”培养不出大数学家,他不赞成中国以“奥数”的形式培养学生。
我们该如何看待中国的“奥数”热?在此,我们约请专业人士撰文回顾奥数的历史,分析国内“奥数”热的原因和存在的问题,以助人们更加全面、深入地认识这一问题。
历史与现实:中国奥数现象的背后
数学奥林匹克竞赛已走过了百余年的历史。
1894年,匈牙利教育部门通过一项决议,准备在中学举办数学竞赛。当时著名科学家埃特沃什男爵担任教育部长。在埃特沃什的积极支持下,这项比赛得到了发扬光大。这是世界上最早的有组织地举办的数学竞赛。后来匈牙利也确实产生了许多著名科学家,比如分析学家费叶尔、舍贵、拉多、哈尔、里斯,组合数学家蔻尼希,以及著名力学家冯·卡门,著名经济学家、1994年因博弈论而获诺贝尔经济学奖的豪尔绍尼等鼎鼎大名的人物。
其他国家也纷纷效仿。罗马尼亚、保加利亚、波兰和捷克斯洛伐克分别于1902年、1949年、1950年和1951年开始举办中学生数学竞赛。特别值得一提的是两个超级大国———前苏联和美国。1934年,在当时的列宁格勒(今圣彼得堡),由著名数学家狄隆涅主持举办了中学生数学竞赛;1935年,莫斯科也开始举办。这两个竞赛都一直延续至今。但是,全俄(后改“全苏”)数学竞赛直到1961年才开始。前苏联把数学竞赛称作“数学奥林匹克”,认为数学是“思维的体操”,这些观点在教育界一直有着很大的影响。
在美国,由于著名数学家伯克霍夫父子和波利亚的积极提倡,于1938年开始举办低年级大学生的普特南数学竞赛,很多题目是中学数学范围内的;普特南竞赛中成绩排在前五位的人,就可以成为普特南会员。在这些人中有许多杰出人物———菲尔兹奖获得者芒福德、米尔诺、奎伦和诺贝尔物理学奖得主费曼、威尔逊等。1972年起,为准备国际数学奥林匹克而开始举办美国数学奥林匹克,它的命题水平也非常之高。最终选拔出来的国家队队员在西点军校等地集训,并与父母一同到白宫接受总统接见。
50年代,罗马尼亚的罗曼等人认为时机已经成熟,可以举办国际性的数学竞赛了。这就是影响最大、级别最高的中学生智力活动———“国际数学奥林匹克”的由来。按照英文缩写,就是现为大家所知的IMO。第一届IMO于1959年在罗马尼亚举行,当时只有七国(罗马尼亚、保加利亚、波兰、匈牙利、捷克斯洛伐克、前民主德国、前苏联)参加。后来,美、英、法、德等老牌资本主义国家和亚洲国家也陆续参加。在今天,IMO已波及到几乎所有的文明国家。
除了最初几届,IMO共有6道试题,正式比赛分两天,每天做三个题目,总共9小时。每题满分7分,总分42分;团队总分252分。大约有十二分之一的学生可以获得金牌。银牌和铜牌的数量分别是金牌的2倍和3倍。IMO试题遍及的数学领域包括:数论、多项式、函数方程、不等式、图论、复数、组合、几何和博弈游戏等几大板块,这亦构成了各国数学竞赛的命题方向。
IMO为发现数学人才做出了贡献。许多IMO优胜者后来成了杰出数学家,如沃尔夫奖获得者卢瓦兹、菲尔兹奖获得者德林菲尔德、约克兹、博切兹、高尔斯、马古利斯、拉佛阁等(其中前5位得过金牌)。
由于众所周知的原因,中国的数学竞赛起步较晚,但后劲十足。“我们也要搞数学竞赛了!”华罗庚说。1956年,首先在北京、天津、上海和武汉举办了一次数学竞赛;由于政治运动的影响,这一活动时断时续;1962年政治环境开始好转,北京等城市又举办了几次。到了“文化大革命”,教育陷入了全面瘫痪的状态。相比之下,前苏联在战争和政治恐怖的恶劣环境里,还能坚持举办数学竞赛,莫斯科竞赛只在1942—1944年中断了三次,实在是难能可贵的。
1978年,“科学的春天”到来了。华罗庚旋即主持了全国八省市的中学数学竞赛。1985年华去世,为了纪念他,于1986年开始举办低年级的“华罗庚金杯赛”,影响很大。1981年,中国数学会决定举行全国高中数学联合竞赛。
1981年,作为IMO东道国的美国邀请中国参加IMO。直到1985年,我国才派出两名选手非正式地参加了IMO,成绩不很理想。于是在全国联赛之后再安排搞一个“冬令营”,后也称“中国数学奥林匹克”,团体第一名获得“陈省身杯”,在此基础上再进行选拔,以组建6个人的国家队。1986年起,除了在台湾举办的一次,我国都派足6名选手正式参加IMO。除了三次成绩稍有点偏后,中国总是第一、二名,而且以第一名居多。物理、化学和计算机竞赛的情形也差不多。如今,中国选手在国际上摘金夺银、凯旋而归已成家常便饭。这些辉煌成绩固然离不开层层选拔与培训,但与今天的奥数热并无直接关系,以前中国队的成绩也很好。
奥数在1990年代初期并不热,那个时候文科(特别是财经类)十分吃香。一切等到1998年以后,奥数突然变热。最直接的原因是初中入学考试取消,这一“减负”举动反而增加了学生的负担,不少中学为了招收更多的优秀生源,把奥数作为标准。其次,是因为高校开始扩招,大家都意识到,大学生不再是“天之骄子”,只有进入名牌大学热门专业,才有更大的出路,而奥数又自然成了进入这些好专业的敲门砖。
数学家是怎样看待奥数的呢?
“在(数学)竞赛中获胜,自然会感到高兴甚至自豪,但在竞赛中受挫,却不需过分悲伤,也不必对自己的数学能力感到失望。为在竞赛中获胜,是需要凭借一些专门的天赋的,但这些天赋对卓有成效的研究工作却完全不是必要的。”
这是伟大的前苏联数学家柯尔莫哥洛夫为一本奥数书写的序中的片段。对于数学教育,柯氏亦不乏独到见解。他指出,数学竞赛首先是培养学生对数学的兴趣,发现他们的数学才能。如果这一工作没有预先做好,在低年级就大搞数学竞赛,拔苗助长,多数人将会逐渐失去解题本领,甚至失去对数学的兴趣。
这确是真知灼见!在我国,柯氏的担忧确实得到了不断的印证。原因在于,中学数学所强调的逻辑严密性,与小学竞赛的智力游戏有较大差异。如果基础没有打好而进行带有很大偏向性的培养,很多学生将不能适应中学阶段的数学;而大学阶段的数学又与中学数学有很大不同,这也是为什么有些奥数高手并不适合数学研究的一个原因。
怀尔斯,这位解决费马大定理的伟大数学家,却被高尔斯评价为“不是天才”。高尔斯是菲尔兹奖获得者、IMO金牌选手。他的根据之一就是怀尔斯没有拿到过IMO金牌。高尔斯并不是刻意贬低怀尔斯。他的话有两层意思,一是说明艰苦的科学研究和奥赛的重大区别;其次,他也认为在IMO上拿到奖牌是需要数学天赋的。
国外奥数选手的培训没有我们这样的规模,所以在IMO中得到奖牌的人确实十分聪明。比如1990年北京IMO中四个满分选手之一的小拉佛阁,他的哥哥在2002年获得菲尔兹奖;而人们认为小拉佛阁更有天才,他已得到很多大奖,将来也极有可能问鼎菲尔兹奖。相比之下,中国的各级奥数优胜者也有工作做得很好的,但目前还没有取得菲尔兹奖级别的成就,这与他们在大学、研究生期间的学习方式也有很大关系。
中科院院士、著名数学家王元认为,总体来说,中国竞赛的命题水平较高,但与国际上比较尚有一定距离,某些难题出得过偏。命题水平的高低体现在它是不是具有好的启发性以及趣味性。华罗庚也认为,出好题比解题更不容易。事实上,中国队在国际上拿到第一名也并不是像某些人想像的那样十拿九稳,至少俄罗斯和美国的实力决不容小视。特别是,做偏题对于成为一名优秀数学家不利,故而引起了丘成桐的忧虑。
相比之下,前苏联的命题水准就比较高。比如,莫斯科竞赛中有这样一道题:阿里巴巴试图潜入山洞。在山洞入口处有一面鼓。鼓的侧面有四个一模一样的小孔,组成正方形的四个顶点。在每个孔的里面各装有一个开关。开关有“上”“下”两种状态。(注意:眼睛看不见!)如果四个开关的状态全都一致,洞门即可打开。现允许将手指伸入任意两个孔,触摸开关以了解其状态,并可随自己的意改变或不改变其状态。但每当这样做了之后,鼓就要飞快地旋转,以至在停转之后无法确认刚才触动了哪些开关。证明:阿里巴巴至多需将手指伸入五次,就可以进入山洞。
容易知道,两次操作(一次靠边的两小孔,一次对角线上的两小孔)把不少于3个开关扳为状态“上”,如果大门没有打开,这就意味着第四个开关处于状态“下”,这时阿里巴巴应将手指伸入对角线上的两个孔,如果碰到向下的开关,把它扳为“上”,从而进入山洞;如果这一对开关均向上,则把其中之一扳为下。这样,显然两个靠边相邻的开关“上”,另两个相邻开关“下”。然后阿里巴巴沿着正方形边入手;如果两个开关处于同一状态,他就改变它们状态从而进入山洞;如果两个开关状态不同,他应该都改变状态,最后一次沿对角线找到开关,改变里面的状态,这样最多五次。
这道题目十分精彩,它考察的是在不同信息下的决策,需要你对问题本质的领悟和洞察。前苏联竞赛中这样的好题比比皆是,思考这些问题应该说是有好处的。
深层次的问题
我国的奥数现象背后是有些深层次的问题。“万般皆下品,唯有读书高”、“学而优则仕”,这种功利主义态度(不管是不是孔夫子的本意)不知毁了多少有才华的人,挤掉了他们的自由发展空间。今天,很多家长自己没有受到良好的教育,加之只有一个孩子,自然把希望尽数寄托在孩子身上,于是追求功名从古代社会的少数人演变成一支浩浩荡荡的大军。正是由于自己没有文化知识,所以教育方式也不当,把分数看得比什么都重要,甚至无知地认定自己的孩子就是天才,极大地忽略了孩子的道德教育与心理素质的培养。
目前的中国之所以成为一个考试大国,正是由于目前的诚信度过低,除了考试、竞赛,好像很难想得出更加公正、客观的遴选人才的办法。那些成天批评高考指挥棒的人可曾想过,如果取消或削弱高考,像美国一样由老师参与推荐会发生什么事情。相比之下,数学比文科、艺术更加客观公正,而且考试成本又低,不像做实验条件太高。因此,中国青睐以数学竞赛作为选拔人才的标准之一,也有其必然的道理。
说到这里,笔者不妨多说几句,其实比奥数更不合理的是英语考试。根据笔者的调查,不参加奥数的学生只要各门功课平衡发展,考一所理想的大学应该是不成问题的;事实上像上海中学这样的“奥数重镇”,对学生的全面发展要求极高。全国高中数学联赛也规定,一试的基础分不到要求,二试的难题全都做对也不能得奖。而英语就不同了,简直是人人非得过的“坎”:考研主要就是用很难的英语来“卡人”的;而工作以后评职称,主要也是考英语,这就更不合理了。有的老同事工作能力很强,结果就在英语上栽了,你说他冤不冤?
笔者同不少家长交流过,发现并非所有家长都对教育无知。他们认为,从长远的角度看,数学对于培养一个人的逻辑思维能力和科学理性精神有着不可替代的作用,并且对孩子将来的大学专业和工作有实质性的影响。如果小时候数学基础没有打好,长大以后再补根本没有可能。从短期的角度看,家长也懂得,数学的相关性最好,数学可以很有效地带动理化和计算机的学习,而补习文科的效果相对就未必那么地好(当然这确也是有些功利了)。
在这两点上,一批教育专家的“宏观观点”与家长的“微观观点”有一定的合拍之处。首先,从长远角度看,奥数主要不以培养数学家为己任,而主要是为优秀学生提供一些机会,因此只能说奥数高手同数学家有较高的相关性。而一些奥数高手未能成为数学家的最主要原因不是奥数本身,而是急功近利,这一点陈省身看得最明白,他说,中国之所以出不了高斯,乃是因为聪明人都想着升官发财。
最后一个微妙的原因也值得一提,我国有几十年尊崇数理化的历史;对大学生的多次调查表明,最受尊敬的总是科学家。究其原因,一方面是学习前苏联对哲学社会科学的压制,另一方面是现代主义中一股崇尚理性、蔑视感性的霸权心态。如今最突出的例子就是一部分艺校为了“凑数”而招收一批文化课很差的学生,让艺校成了“回收站”,这激起了有关人士的强烈不满。
关注奥数网官方微信 数学资料、数学真题、更有全国教育资讯 微信搜索“奥数网”或扫描二维码即可添加